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Abstract  

Takeuti has studied models of axiomatic set theory in which the "truth values" are 
elements of a complete Boolean algebra of projections on closed subspaces of a Hilbert 
space; and has found that the real numbers of such a model can be taken to be self- 
adjoint operators which can be resolved in terms of projections belonging to the Boolean 
algebra, It is suggested that this is the mathematical source of the replacement of real 
quantities by operators in quantizing a classical description, and that quantum theory 
involves a relativity principle with Takeuti's Boolean algebras serving as reference "frames." 

1. Introduction 

In expounding his views on the foundations of  quantum mechanics, Niels 
Bohr 2 (probably hoping to convince Einstein of the correctness of his 
philosophical approach) emphasized the analogy between quantum theory and 
relativity theory. Bohr maintained that "'the theory of relativity reminds us of 
the subjective character of all physical phenomena, a character which depends 
essentially upon the state of motion of the observer." Commenting on this 
in a recent work, 3 Jammer writes 

• . .  Bohi erroneously generalized the relativity or reference-frame dependence of metrical 
attributes, such as length or duration, which in Newtonian physics are invariants, to all 
concepts of classical physics, including such invariants as rest-mass, proper-time, or 
charge. Bohi overlooked that the theory of relativity is also a theory of invariants and 
that, above all, its notion of "events" such as the collision of two particles, denotes some- 
thing absolute, entirely independent of the reference frame of the observer and hence 
logically prior to the assignment of metrical attributes. 

R is the purpose of this article to call attention to the relevance for the found- 
ational problems in quantum theory of some recent mathematical discoveries by 
Gaisi Takeuti, 4 and in particular to show how these discoveries leadto an inter- 

t This work was partially supported by the National Science Foundation under grant 
No. NSF MCS 76-42412. 

2 In Bohr (1929), as quoted in [2], p. 132. 
a Jammer, (1974), p. 132. 
4 Cf. Takeuti (1975). 
This journal is copyrighted by Plenum. Each article is available for $7.50 from Plenum 
Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. 
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pretation of the formalism of quantum theory in terms of a relativity principle. 
One of the curious properties of  the quantum mechanical algorithms, as 

they are often presented, is the use of  formulas from classical mechanics as 
intermediate steps/I1 the derivation of quantum mechanical rules. Thus, 
"quantizing" a classical theory involves replacement (say in the formula for 
the Hamiltonian of an appropriate system) of various symbols representing real 
quantities by symbols representing corresponding self-adjoint operators on a 
Hflbert space. Takeuti discovered that in certain "nonstandard" models of  
axiomatic set theory, all real variables are interpretable as setf-ad]oint operators 
on a Hilbert space. It is this suggestive relationship that forms the basis of  the 
interpretation suggested in this article. 

Takeuti's models are particular examples of  the Boolean-valued models 
studied by Scott and Solovay. 5 The usual models of systems formalized in 
predicate logic (also known as first-order functional calculus) give a value 
to each "sentence" of  the system which is an element of the set {true, false}. 
The models studied by Scott-SNovay give values to sentences which are elements 
of  some definite Boolean algebra (technically, the Boolean algebra must satisfy 
a requirement called completeness). Takeuti considered the particular case in 
which the Boolean algebra used is an algebra of  projections in a Hilbert space 
(or equivalently, of  closed subspaces of  the Hilbert space). Takeuti was then 
able to show that, in a sense that will be explained below, the real numbers 
"of  the model" are simply self-adjoint operators on the ttilbert space which 
have a spectral resolution in terms of projections belonNng to the algebra. 

Now, given any set of pairwise commuting self, ad]oint operators, there is a 
complete Boolean algebra containing all projections needed for the spectral 
resolution of  the given operators. Our proposal is to regard such complete 
Boolean algebras as reference frames relative to which measurements may be 
made of the observables corresponding to the given operators. The well-known 
anomalies relating to measurement of "complementary" observables then appear 
no more paradoxical than the relative character of measurements of space or 
time in special relativity. In particular the famous Einstein-Rosen-Podolsky 
paradox admits of a straightforward explanation. The tendency to resort to 
the subjectivism of the Copenhagen interpretation (according to which quantum 
mechanics must be understood as being not about nature but only about 6 
"what we can say about nature") is now easily understood as a natural result 
of the lack of  awareness that we inevitably perceive the quantum world only 
filtered through a Boolean frame. The same may be said of the proposal to 
regard the lattice of  all projections on a Hilbert space as constituting a kind of 
nonclassical "quantum logic," and to take the anomalies o f  quantum theory 
as constituting an empirical refutation of  ordinary logic. 

Finally (and presumably this last point will ultimately prove decisive for 
acceptance of  the interpretation being urged in this paper) the principle of 
relativity of  quantum measurements suggests various new ways in which 
quantum theory can articulate with special relativity (the Lorentz group 
s These models are described in Jech (1971). 
6 Cf. Jammer (1974), p. 204. 
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should be somehow combined with the unitary group to obtain a super.. 
relativity principle) and even with general relativity (since quantizing a theory 
is claimed to be simply the result of applying a Boolean valuation to the sen- 
tences of the theory, this may indicate how to quantize the gravitational field). 

2. Boolean-Valued Models o f  Set Theory 

We shall work with the well known language o f  set theory. In this language, 
sentences are generated by beginning with formulas of the form (u = v) and 
(u E v) and applying the logical operations: -I & V -+ *~ (Vu) (9 v), where u, v 
are to be selected freely from a given infinite alphabet of "variables." Despite 
this severely limited means of expression, it is possible, as is very well known, 
to express all of  the propositions of ordinary mathematics in the language by 
using appropriate abbreviations. Moreover, the sentences representing any 
theorem of ordinary mathematics can be deduced from a certain familiar set 
of sentences, the so-called Zermelo-Fraenkel axioms (abbreviated ZF; when 
the axiom of choice is included the abbreviation is ZFC). We assume that the 
reader is familiar with these matters (see for example Jech, 1971). 

In 1963, Paul Cohen developed a new and important method (called forcing) 
for constructing models of  ZF and showed how models constructed in this way 
could be used to settle some of  the most important, then outstanding, problems 
of axiomatic set theory (including the problems of the independence of the 
axiom of choice and of the continuum hypothesis). Later, Dana Scott and 
Robert Solovay observed that Cohen's method could be interpreted as involv- 
ing a shift from the two-valued Boolean algebra (consisting of the "truth values" 
true and false) to certain infinite complete Boolean algebras. We begin by 
explaining the Scott-Solovay formulation. 

Let N be a Boolean algebra that is complete in the sense that every non- 
empty set of elements of N has a least upper bound. We write O, L V, A, -1, 
in f, sup to represent, respectively, the least element of  N ,  the greatest element 
of N,  the "join" operation on ~ ,  the "meet" operation on ~ ,  "complementa- 
tion" on N, the greatest lower bound of a nonempty subset of N, and the least 
upper bound of  a nonempty subset of  N. Using transfinite recursion, we define 
I](~ ~)  for each ordinal a as follows: 

vy)=¢ 
V(~)~ !s the set o f  all mappings whose domain is a subset o f  V (~ )  and whose +1 / 

range is a subset o f  N ; 

u 

for 3" a limit ordinal. 
Finally we let V (~) be the collection o f all elements of  the V (~)  for any 

ordinal a. The elements of V (e)  can be thought of as a kind of generalized set. 
Ordinary sets can be thought of as functions with values in the two-element 
Boolean algebra {0,/}; the elements of V (e )  are functions with values inN.  
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The usual techniques of  elementary logic can be applied to give a "truth value" 
~$] in ~ to each sentence ~ of  our language. (Intuitively we think of the vari- 
ables as ranging over V (~).) For details of the definition see Jech (1971). 
The result (Jectl, 1971) on which all applications are based is the following: 

Theorem (Scott-Solovay). Let ~ be a sentence that can be logically 
deduced from the axioms ZFC. Then ~ ~b] = L 

Tile Boolean-valued universe V (~) can be usefully compared with the 
ordinary universe V defined as follows: 

11o=¢ 
V~+I is the set of all subsets of V~ 

Vv = U V~ for 7 a limit ordinal 
c~ <'), 

Vis the collection of all elements of the V~, 

We define a mapx ->~ which embeds Vin V (~) by recursion as follows: 

For each v E V, ~ is the map with constant value I defined on 

An dement a ~ Uis called absolute if for some formula ~(x) the sentences 
~(a) and 

(Vx,y) [(~(x) ~ ~(y)) -~ (x =y)] 

are provable from ZFC and 

~(a )~  = i 

(In such a case we say that "a in 1/~ is a".) In particular, if co = {0 ,1 ,2  . . . .  ) 
is the set of  natural numbers, then for each n C co, n in V ~ is ~. Also co in V ~ 
is &. If Q, the set of rational numbers is defined as usual, then for each r C Q, 
r in V a is t: and also (~ in V ~ is Q. When no ambiguities result, we feel free to 
omit the "V" in such cases. What is interesting for us is that if R is the set of 
real numbers then R in V ~ need not be R. 

3. Algebras o f  Projections 

Let Jf~ be a Hilbert space. A bounded linear operator P on ]gis called a 
projection i f P  2 = P and P is self-adjoint. In such a case the range of P is a 
closed linear subspace L ofoggand P is the (orthogonal) projection operator on 
L. (I.e., for x E ~f, Px is the point of  L nearest to x in the Hilbert space metric.) 
In particular, 0 is the projection on the zero-dimensional subspace of  ~ con- 
sisting of the origin, and the identi ty/is  the projection on the entire space o'4 °. 
I fP  and Q are the projections on L and M, respectively, then we may define 
the Boolean operations -]P, P V Q, P A Q. Namely, "qP is the projection on the 
orthogonal complement of L, P V Q is the projection on the smallest linear 
subspace containing L and M, and P A Q is the projection on L (3 3/. A Boolean 
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algebra o f  projections is simply a set o f  projections containing 0 and I and 
closed under the three Boolean operations. Such an algebra ~ is complete if, 
whenever Pa E ~ for all ~ E J where each Ps is the projection on Ls ,  the pro- 
jection on the smallest closed subspace o f  d~ containing all o f  the Pa is likewise 
i n d .  Such an algebra is a complete Boolean algebra in the usual sense, and all 
of  the considerations o f  the preceding section apply. 

From now on, let ~ be a complete algebra o f  projections on W .  Then (~ )  
is the set o f  all self-adjoint operators A such that if we write the  spectral 
resolution 

A = f)tdEx 

of  A,  then each projection Ex belongs to N .  The key fact on which our inter- 
pretation of  quantum mechanics is based is that given a set {As } o f  self-adjoint 
operators on Jr,  there exists a complete Boolean algebra ~ of  projections for 
which ~ contains all o f  the As, if and only if each pair As, A~ commute. 

A set o f  elements Pa o f  ~ is called a partition of  unity if 

Ps "P~ = 0 unless a =/3 (1) 

Pa = I  (2) 
s 

where the sum is understood in the sense of  the strong topology on 24 ° . Now, 
we can show that ~ u E Q ~ = I for u E V e if and only if u can be represented 
by 

u= E q,ei 
i 

where each qi E Q and where {Pi} is a partition o f  unity. Now, let us write 

[R e = { u E  V e l [ u E  N] = I }  

where N is defined as the set o f  upper Dedekind sections on Q. Then for any 
u E N e we can define for anY real number X 

E x =  i n f ~ r E u ]  
r>a.  

Then 

A = fX dEa (*) 

is well defined and is a self-adjoint operator on a f .  Conversely, given a self- 
adjoint operator A E (&), we can write its spectral resolution (*) and then 
define 

u(r) = g  
for each r E Q. Then u E R e . The one-to-one correspondence just defined 
between R ~ and (N) can be shown to preserve +, -, and <~. It is in this sense 
that the real numbers o f  our model are self-adjoint operators on a/f. 
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4. Boolean Frames in Quantum Mechanics 

As in special relativity theory, we assume that all measurements are relative 
to the frame o f  observation. In special relativity the appropriate kind of  frame 
is the so-called inertial frame. In quantum theory, it is a complete' Boolean 
algebra of  projections. 

Quantities that can be measured simultaneously correspond to commuting 
self-adjoint operators; hence there is a complete Boolean algebra & of  projec- 
tions such that (~ )  Contains all such operators. Such an atgebra ~ is a reference 
frame with respect to which the measurements are being made. The secret of 
complementarity is then simply that, for a pair of  complementary quantities, 
there is no Boolean algebra ~ such that (~)  contains both of them. An inter- 
action corresponding to a position measurement and one corresponding to a 
momentum measurement are thus measurements w i t h  respect to distinct 
frames of reference (as in relativity theory are measurements of space-time 
coordinates with respect to observers moving relative to one another). 

The underlying conceptual framework is as follows: We suppose that we 
have given a collection of sentences of the language of  set theory which express 
various relationships among real physical quantities. Some of these sentences 
express the basic physics. Others express properties of  specific physical systems 
including measurement apparatus. In particular, some sentences may express 
the result of a measurement. The correctness of  the description of reality given 
by these sentences ~b can be stated as 

for any complete Boolean algebra ~ .  The role of  a particular Boolean frame 
can be seen if we analyze a sentence that expresses the fact that a real quantity 
that is the result of  an interaction with some apparatus satisfies some condition 
(e.g., an inequality). Such a sentence has the form p ~ q when p expresses the 
effect of  the interaction and q the resulting condition. (For example, if a 
particle's presence in a sl i t-a "position" measurement-is revealed by the action 
of a counter, we may take p to be the statement "the counter clicks" and q the 
statement "the particle was in the slit.") We will have [ p ~ q ] = I in every 
Boolean frame. In order to obtain from this the desired [q ~ = / ,  we will need 
a frame in which ~p~ = I. The physics of the apparatus determines an appropri- 
ate frame in which this last holds. 

Note that since the transition from real quantities to self-adjoint operators 
is with respect to a particular frame, the fact that a particular observable is 
represented by some specific operator also must be taken relative to a frame. 

We conclude this section by referring to Table I which indicates by a com- 
parison with special relativity how quantum theory is to be regarded as a 
relativity theory. So far we have only mentioned the analogy between inertial 
frames and Boolean frames. In special relativity theory, the Lorentz transform- 
ation gives the mathematical relationship between measurements made from 
certain corresponding frames. One example of  such a transformation in quantum 
theory is the Fourier transform~ which establishes a similar correspondence 
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TABLE I 

Special relativity Quantum theory 

Inertial frame 
Lorentz transformation 
Lorentz group 

Space-time vector dx ~ 
Minkowski metric 

dx2 +dy2 + dz 2 - dt2 

Boolean frame 
Fourier transform 
Unitary group 

(or appropriate subgroup) 
State vector qJ 
Hilbert space metric ~ *~p 
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between "position space" and "momentum space". Since both the Fourier 
transform and the Schr6dinger transform 

u ( 0 , =  e -~tH 

are unitary, the analog of the Lorentz group is some subgroup :of the unitary 
group (perhaps the entire unitary group). Finally the state vector ff is an 
invariant independent of  the frame (hence analogous to the Minkowski metric). 

5. The Anomalies o f  Quantum Mechanics 

5.1. The two-slit experiment. There are two slits in front of a screen con- 
taining counters,~ A beam of particles is prepared that can reach the screen 
only bY passing through one o f  the slits. The anomaly may be expressed by the 
fact~ that the pattern on the screen when both slits are open is not the union of  
the patterns obtained when each is open separately. (The anomaly persists even 
when the beam is of  such low intensity that at most one particle can be in the 
vicinity of  the slits at any given time.) Our explanation is simply that opening 
both slits involves measuring relative to a Boolean frame (one corresponding 
to a momentum measurement) different from the frame involved when only 
one slit is open (which corresponds to a position measurement). 

5.2. SchrOdinger's Cat. An apparatus is designed which amplifies a micro- 
scopic event of  probability 1/2 (say, a photon passing through a half-silvered 
mirror) to a decidedly macroscopic one- the  electrocution of a cat. (Why 
Schr6dinger chose this relatively innocent species for his example, when he 
could have chosen an example more worthy, such as the mosquito, must 
remain a mystery.) If all this happens in a closed box, is it the opening of the 
lid by an observer which causes the state function which assigns equal weights 
of life and death to the perhaps unfortunate animal to suddenly collapse into 
one or another of the eigenstates? We respond: there is no collapse. The 
Boolean frame corresponding to Schr6dinger's macabre "measurement" will 
contain a pair of  projections corresponding ;to "the cat lives" and "the cat is 
dead." Opening the lid of  the box has no particular effect. 



874 MARTIN DAVIS 

5.3. The EPR Paradox. Two particles A and B interact in such a way that 
the sum of their momenta after the interaction is 0. Hence a measurement of 
the momentum of  A will also yield the momentum o f &  Such a measurement 
thus will not only cause a "collapse" of the state function of A, but also that 
of  B, which by this time may be very far away. 

Our analysis is quite simple. Let PA, PB represent the momenta of A and 
B, respectively, at some given time t. Choosing an appropriate frame: 

~(PA +PB) =0~ =I 
By Takeuti's work this gives 

MA +MB =0 

where MA, MB are the momentum operators corresponding to A and B, res- 
pectively. 

6. Comparison with Everett's "Many Worlds" lnterpretation 

Our interpretation has in common with Everett's "many worlds" interpreta- 
tion 7 that the state vector does not collapse into an eigenstate as the result of 
a measurement. But the views are really quite different. We have no need to 
envision a multiplicity of universes. The difference is seen quite clearly by con- 
trasting our treatment of  Schr6dinger's cat paradox with Everett's. In Everett's 
view, carrying out Schr6dinger's experiment causes the universe to split in two: 
in one world the cat is alive and well; in the other it is, alas, a charred corpse. 

7. Suggestions for Further Work 

One has every right to expect that the advantage of possessing the "correct" 
point of  view on a foundational issue will be made clear by the scientific 
progress that results. Here we want to suggest two directions for research that 
our interpretation suggests: 

(a) If quantum theory embodies a relativity principle, it surely interacts 
with the other basic relativity principles. Thus, there should be a relativity 
theory combining special relativity and quantum theory in which the under- 
lying group combines (perhaps as a direct product) the Lorentz and the unitary 
groups. 

(b) If "quantizing" a classical theory simply involves applying appropriate 
Boolean valuations to the sentences of the theory, the same process should 
work for quantum field theory, and even for the quantization of the gravita- 
tional field. 
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